
John Smart

INL/MIS-15-35328

Advanced Transportation Core Customer: U.S. Department of Energy's Office of Energy Efficiency & Renewable Energy (EERE) Sustainable Transportation

- EERE is split into three areas:
 - Renewable Energy: \$370M
 - Energy Efficiency: \$664M
 - Sustainable Transportation: \$558M

Drivers of Technology:

- Reduce GHG emissions by 15% by 2020
- Reduce net oil imports by 50% by 2020
- Achieve 54.5 mpg
 CAFE standard by
 2025

Additional (Larger) Drivers for Advanced Transportation

Regulation at the State Level

California Air Resource Board (CARB) introduced the Zero Emission Vehicle (ZEV) mandate starting in 1990 in order to:

- 1. Reduce smog
- 2. Reduce greenhouse gas
- 3. Promote cleanest cars

California Environmental Protection Agency

4. Provide fuels for cleanest cars (electricity & hydrogen)

Zero Emission Vehicle (ZEV) mandate drives sales in California

7500 ZEVs 2012-2014; 25,000 ZEVs 2015-2017

10 other states will mandate the same:

 Connecticut, Maine, Maryland, Massachusetts, New Jersey, New Mexico, New York, Oregon, Rhode Island, and Vermont

ZEV credits have their own market...

Advanced Transportation: Drivers & Gaps

Drivers

- High level goals at the federal Level DOE-EERE:
 - Reduce GHG emissions by 15% by 2020
 - Reduce net oil imports by 50% by 2020
 - Achieve CAFE standards 54.5 mpg by 2025
- State level mandates driving sales CARB:
 - Reduce Smog / Reduce greenhouse gas
 - Promote Cleanest Cars /Provide Fuels for Cleanest Cars (electricity & hydrogen)
 - 7500 ZEVs between 2012 2014; 25,000 ZEVs between 2015 2017

Gaps

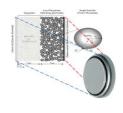
- 1. Cost of vehicle is prohibitive to consumer
- 2. Vehicle does not meet the precieved needs of the consumer (range, fueling time, infrastructure accessibility / cost / convenience)
- 3. Infrastructure / fuel is cost-prohibitive or does not exist

INL's Advanced Transportation Activities

 Attacking the key challenges of cost, consumer acceptance, and infrastructure to overcome barriers to alternative-energy vehicle adoption

Battery Performance & Life Testing and Diagnostics

- Cost reduction
- Safety and life improvements


Real-time Power and

Emulation & Simulation

Energy Systems

production

Added-value hydrogen

H₂ & Bioenergy Feedstock

Serformance Science

Big Data

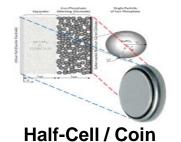
 Understanding consumer experience with alternativeenergy vehicles and infrastructure

Electric Vehicle Charging Infrastructure

 Supporting the development of global standards

Bioenergy Feedstocks

- Cost reduction
- Quality improvement
- Scale-up and integration



Battery Test Center and Advanced Vehicles

Development of next-generation low cost / reliable batteries

- Leverage unique INL capabilities in Performance Science
- Foundation: Battery Testing Center & Advanced Vehicle Testing data collection
- Growth through strong partnerships with:
 - 1. DOE-EERE (USABC)
 - 2. OEMs
 - 3. Battery Developers
- Impact: Enabling and accelerating next gen-batteries

Expansion of Performance Science lifecycle modeling

Advanced Vehicles & Fueling Infrastructure

Understand the consumer experience with alternative-energy vehicles

- Leverage unique INL capabilities in Big Data analysis
- Foundation: Advanced Vehicle Testing & EV Infrastructure Laboratory
- Growth: Steward to DOE-EERE, OEMs, SAE & CARB
- Impact: Increasing return on investment for alt-energy infrastructure

development and deployment

The EV Project

- · 8,000 Nissan Leafs and Chevrolet Volts
- 8,000 level 2 residential EVSE
- 5,000 level 2 commercial EVSE
- · Up to 200 DC fast chargers
- 19 US cities

Big Data Analysis

Heat maps of EV charging locations

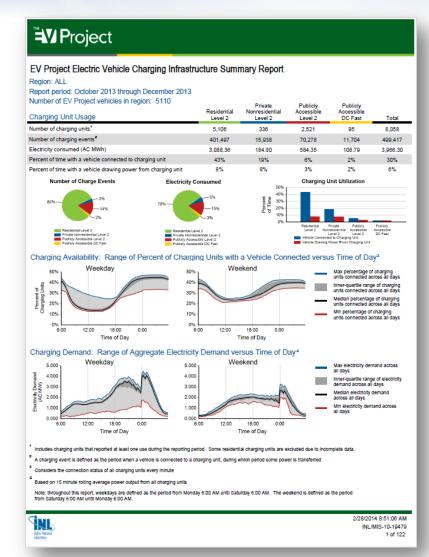
Global standardization of wireless charging with SAE & OEMs

Alt-energy corridor analysis

Advanced Vehicle Testing Experience

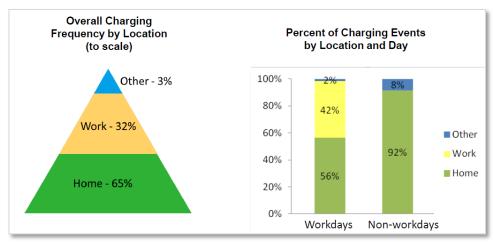
- Since 1994, INL and its partners have benchmarked PEVs in the lab, on the track, and on the road
 - INL has collected data from 232 million miles of driving and 44,300 AC MWh of charging from 27,400 electric drive vehicles and 17,000 charging units

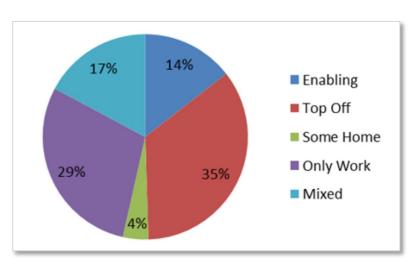
Example: The EV Project


- 8,228 Leafs, Volts and Smart ED's
 - 124 million test miles
 - At one point, 1 million test miles every 5 days
- 12,363 EVSE and DCFC
 - 4.2 million charge events

Driving and Charging Behavior

- Analysis of driving behavior
 - Energy consumption
 - Usage patterns
 - Common parking locations
- Analysis of charging behavior
 - Utilization by time of day, location, and power level
 - Home vs. away from home
 - AC Level 1/2 vs. DC fast charge
 - Aggregate power demand
 - Impact of time-of-use electricity rates





Workplace Charging Impact

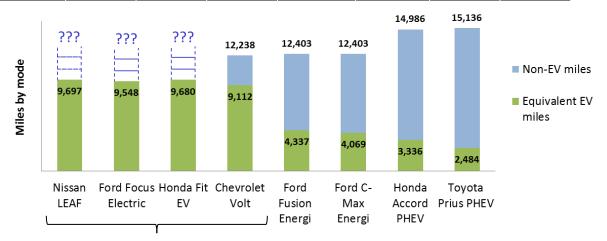
- Most charging occurs at home and work
- Charging at "Other" locations may be critical to some drivers
- Workplace charging:
 - Enabled 14% of Leaf drivers to complete daily commutes that would have otherwise been impossible
 - Provided 15 mile average range increase on those days
 - Drivers averaged 12% more EV miles when they charged at work, regardless of need

Sample of Nissan Leafs in The EV Project whose drivers had access to charging at home and work

BEV, EREV, HEV, PHEV...

BEV (Battery Electric Vehicle):
Pure electric (no engine), charged
by plugging in; typically with 75 100 mile electric range
Full ZEV

EREV (Extend Range Electric Vehicle):
Pure electric for 30 - 40 miles, then engine turns on for extended range
Partial ZEV... but is it?

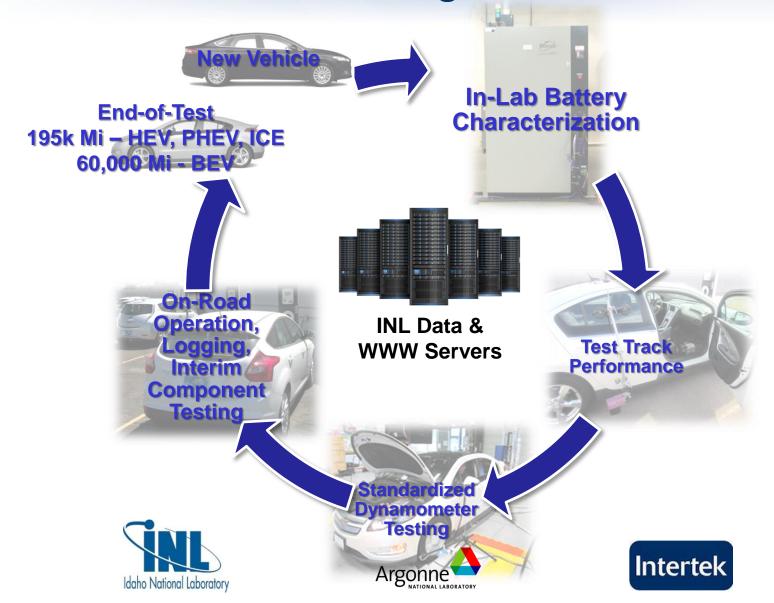


HEV (Hybrid Electric Vehicle): Engine and battery power the wheels together. The battery is charged by the engine and regenerative braking PHEV (Plug-in Hybrid Electric Vehicle): Similar architecture as HEV but battery can also be charged by plugging in; minimal all-electric range (5 - 20 miles) Both Partial ZEV

EV Miles Traveled (eVMT) Analysis Results

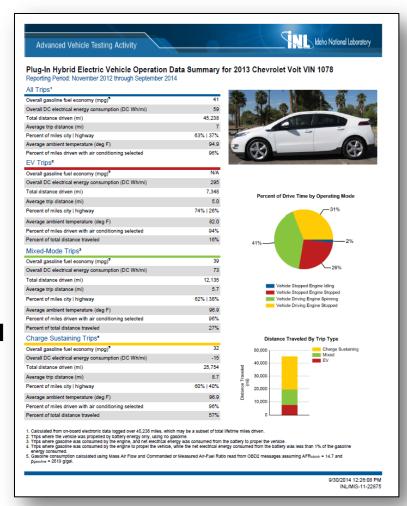
		BEV		EREV		PHE	V		
	Nissan LEAF	Ford Focus Electric	Honda Fit EV	Chevrolet Volt	Ford Fusion Energi	Ford C-Max Energi	Honda Accord PHEV	Toyota Prius PHEV	Total
Number of Vehicles	4,039	2,193	645	1,867	5,803	5,368	189	1,523	21,627
Total Vehicle Miles Traveled VMT (miles)	28,520,792	10,043,000	4,912,920	20,950,967	33,098,000	39,376,000	1,794,494	19,772,530	158,468,703
Total Calculated Electric Vehicle Miles Traveled eVMT (miles)	28,520,792	10,043,000	4,912,920	15,599,508	11,572,000	12,918,000	399,412	3,224,981	87,190,613
Percent of EV- equivalent miles	100%	100%	100%	74%	35%	33%	22%	16%	
estimated Annual VMT	9,697	9,548	9,680	12,238	12,403	12,403	14,986	15,136	
estimated Annual eVMT	9,697	9,548	9,680	9,112	4,337	4,069	3,336	2,484	

- EREV shows comparable eVMT as BEV
- Total VMT in households with BEV is unknown



Advanced Vehicle Testing Activity: On-road and Laboratory Testing and Evaluation

Advanced Vehicle Testing Process



High-mileage Fleet Evaluation Results

Information and results published to AVTA website

- Baseline performance testing
 - Specifications
 - Acceleration / braking
 - Test track energy consumption
- Battery test results
 - Capacity
 - Power capability
- Fleet fuel economy relative to use and conditions
 - Operation over vehicle life
- Operating costs
- Maintenance history

Vehicle Charge Connection International Standards

- Plug-In Vehicles can be charged at different voltages
- Lack of plug commonality limits consumer acceptance & marketplace penetration

AC Level 1 (120V)

Nissan Leaf: 10-12 hrs

AC Level 2 (240V)

Nissan Leaf: 4-6 hrs

Alternating current (AC)

SAE J1772/IEC 62196-2

Direct current (DC)

IEC 62196-3

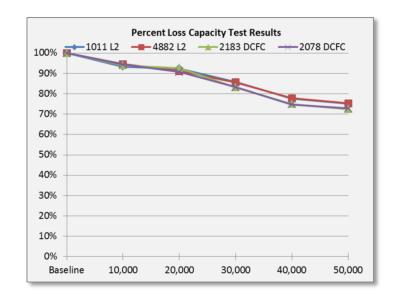
IEC 62196-3

GB/China

DC Fast Charge (480V)

Nissan Leaf: 80% ~20 mins

	System A CHAdeMO (Japan)	System B CATARC (PRC)	COMBO1 (US) Sys	combo2	
Connector	1				
Vehicle Inlet			®		
Communication Protocol	CA	AN	PLC		


DC Fast Charging Impact Study on 2012 Leafs

- All Leafs were the same color avoid unequal solar loading
- Leafs' climate control is set at 72°F year round

After 50,000 miles:

NO appreciable difference in capacity loss (~2%) between AC Level 2 and DC Fast Charged packs

Advance Sustainable Transportation Summary

- With stretch targets to reduce green-house gas emission, improve CAFE mileages and decrease dependency on foreign oil, alternativeenergy vehicles (electric, biofuel, hydrogen) will be continue to be developed regardless of the commodity price of oil
- Gaps towards achieving these targets are primarily around the cost of the alt-energy vehicle, its corresponding infrastructure / fuel and customer education
- INL is attacking these gaps across our Advanced Transportation activities
 - Reduction of battery costs
 - Consumer education with vehicles and fueling infrastructure
 - Fueling/charging infrastructure analysis and modeling
 - Fuel cost reduction of hydrogen / bio-fuels

